Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation

Authors

Abstract:

Herein, we report multi-element doped Type-II heterostructure assembly consists of N, S doped TiO2 and ZnO for electrochemical crystal violet dye degradation studies. Electrochemical measurements were performed on these synthesized N-S codoped TiO2/ZnO compositeheterostructured assemblies which are fabricated on Titanium (Ti) substrate. It was observed that a composite electrode (N, S-TiO2/ZnO@Ti) assembly has shown better efficiency metrics in comparison to all individual electrodes (bare Ti, TiO@Ti, ZnO@Ti) highlighting the importance of heterostructures. The findings of this article will help to design economic materials for complex dye molecule degradation studies as well as paves path towards better understanding of molecular mechanisms of dye degradation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

N, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye

In contemporary research, “Heterostructure” assemblies play an important role in energy conversion systems, wherein the composite assemblies facilitate faster charge carrier transport across the material interfaces. The improved/enhanced efficiency metrics in these systems (electro/photo-electrochemical processes/devices) is due to synergistic interaction and synchronized charge transport a...

full text

Cation-Exchange Resin Assisted Fenton Degradation of Crystal Violet Dye

Adsorption techniques are widely used to remove the pollutants from waters, especially those that are not easily biodegradable. The removal of crystal violet dye (CVD) from water was studied by using Amberlyst 15, a cation-exchange resin (CER), along with Ferrous (Fe 2+ ) and H2O2 . In this study the main factors that can influence the degradation of crystal violet dye are molar ratio of [(H2O2...

full text

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

full text

Chemical cystitis due to crystal violet dye: a case report

INTRODUCTION Crystal violet was commonly used for the treatment of oral and vaginal candidiasis or for sterilization during operations up to the 1960s. Because crystal violet is potentially toxic to mucosal membranes, it has been replaced with other disinfectants, and crystal violet is rarely used. We report a case of chemical cystitis due to intravesical instillation of crystal violet dye. C...

full text

Electrochemical Degradation of Acridine Orange Dye at Ru-Doped Platinum Anode in Aqueous Solution

Degradation of acridine orange (AO) in aqueous solution by anodic oxidation with a Ru-doped Pt electrode (RuDPt) can be applied to the remediation of waste waters containing acridine orange. This environmentally friendly method decontaminates completely aqueous solutions of this dye. The COD value decreases to ~98% of the initial COD. Acridine orange (AO) is more rapidly removed in RuDPt electr...

full text

Degradation of crystal violet using copper modified iron oxide as heterogeneous photo-fenton reagent

The heterogeneous photo-Fenton degradation of crystal violet under visible light has been investigated usingcopper modified iron oxide. The photocatalyst has been prepared by coprecipitation method. The rate ofphotocatalyic degradation of dye was monitored spectrophotometrically. It has been observed thatphotocatalytic degradation follows pseudo first order kinetics. The effect of various param...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  303- 311

publication date 2020-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023